Planar capacitive imaging for composite delamination damage characterization

Author:

Gupta Sumit,Kim Hyungsuk (Eric),Kim Hyonny,Loh Kenneth JORCID

Abstract

Abstract The objective of this study is to develop and validate a noncontact, nondestructive inspection and imaging method for rapidly assessing the subsurface condition of carbon fiber-reinforced polymer (CFRP) composite structures. The method works on the principle of planar electrical capacitance tomography (ECT). Unlike conventional ECT systems, electrodes are arranged on a rectangular planar surface in the form of a grid. The volume on one side of the electrode plane is interrogated with an electric field, and the mutual capacitances between the electrodes are measured. The volumetric electrical permittivity distribution of the interrogated region is then reconstructed from the measured capacitance responses. In this work, an ECT image reconstruction algorithm was implemented, and a customized planar capacitive imaging system was prototyped. First, different objects were placed near the electrode array, and the corresponding volumetric change in electrical permittivity was successfully captured. Second, the planar ECT system was employed for detecting artificially introduced subsurface defects in 3D-printed objects. Third, CFRP specimens with different sizes of single-layer delamination were fabricated and subjected to ECT interrogation. The results confirmed that the planar ECT system could detect the location and size of delamination in CFRP panels. The accuracy and resolution of the planar ECT prototype were also characterized.

Funder

Office of Naval Research

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3