Self-Sensing for Twisted String Actuators Using Conductive Supercoiled Polymers

Author:

Bombara David1,Mansurov Vasilii1,Konda Revanth1,Fowzer Steven1,Zhang Jun1

Affiliation:

1. University of Nevada, Reno, Reno, NV

Abstract

Abstract The twisted string actuator (TSA), as a recently discovered artificial muscle, has attracted a lot of attention as a compliant and powerful actuation mechanism. A TSA consists of two strings attached to a motor on one end and a load on the other end. The motor’s rotation twists the strings and generates linear actuation. A common challenge is to obtain TSAs’ strains using compact approaches. Previous studies exclusively utilized external position sensors that not only increased system cost, size and complexity, but also lowered actuator compliance. In this paper, self-sensing strategies are presented to estimate TSAs’ strains without external sensors. By incorporating conductive and stretchable nylon strings, called super-coiled polymer (SCP) strings, into TSAs, their strains can be estimated from the resistance values of SCP strings. Two self-sensing configurations are realized: (1) TSA with one regular string and one SCP string, and (2) TSA with two SCP strings. Experiments are conducted to show the correlation between the length and resistance of TSA under different conditions. Polynomial and Preisach hysteresis models were successfully employed to capture the Length – Resistance correlation and to estimate TSA’s length using the resistance.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Self-sensing TSA-actuated Anthropomorphic Robot Hand;Journal of Bionic Engineering;2024-03-28

2. Electro-thermally controllable twisted coiled actuators (TCA) using nylon line;Electroactive Polymer Actuators and Devices (EAPAD) XXIV;2022-04-20

3. A Self-sensing Inverse Pneumatic Artificial Muscle;2022 IEEE 5th International Conference on Soft Robotics (RoboSoft);2022-04-04

4. What is an artificial muscle? A comparison of soft actuators to biological muscles;Bioinspiration & Biomimetics;2021-12-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3