What is an artificial muscle? A comparison of soft actuators to biological muscles

Author:

Higueras-Ruiz Diego RORCID,Nishikawa Kiisa,Feigenbaum Heidi,Shafer Michael

Abstract

Abstract Interest in emulating the properties of biological muscles that allow for fast adaptability and control in unstructured environments has motivated researchers to develop new soft actuators, often referred to as ‘artificial muscles’. The field of soft robotics is evolving rapidly as new soft actuator designs are published every year. In parallel, recent studies have also provided new insights for understanding biological muscles as ‘active’ materials whose tunable properties allow them to adapt rapidly to external perturbations. This work presents a comparative study of biological muscles and soft actuators, focusing on those properties that make biological muscles highly adaptable systems. In doing so, we briefly review the latest soft actuation technologies, their actuation mechanisms, and advantages and disadvantages from an operational perspective. Next, we review the latest advances in understanding biological muscles. This presents insight into muscle architecture, the actuation mechanism, and modeling, but more importantly, it provides an understanding of the properties that contribute to adaptability and control. Finally, we conduct a comparative study of biological muscles and soft actuators. Here, we present the accomplishments of each soft actuation technology, the remaining challenges, and future directions. Additionally, this comparative study contributes to providing further insight on soft robotic terms, such as biomimetic actuators, artificial muscles, and conceptualizing a higher level of performance actuator named artificial supermuscle. In conclusion, while soft actuators often have performance metrics such as specific power, efficiency, response time, and others similar to those in muscles, significant challenges remain when finding suitable substitutes for biological muscles, in terms of other factors such as control strategies, onboard energy integration, and thermoregulation.

Publisher

IOP Publishing

Subject

Engineering (miscellaneous),Molecular Medicine,Biochemistry,Biophysics,Biotechnology

Reference315 articles.

1. Human integration into robot control utilising potential fields;Aigner,1997

2. Control architecture for human–robot integration: application to a robotic wheelchair;Galindo;IEEE Trans. Syst. Man Cybern. B,2006

3. Human–robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification;Lee;Mechatronics,2014

4. Quantifying the human–robot interaction forces between a lower limb exoskeleton and healthy users;Rathore,2016

5. Physical human–robot interaction of a robotic exoskeleton by admittance control;Li;IEEE Trans. Ind. Electron.,2018

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3