Exploiting Redundancies for Workspace Enlargement and Joint Trajectory Optimization of a Kinematically Redundant Hybrid Parallel Robot

Author:

Wen Kefei1,Gosselin Clément1

Affiliation:

1. Department of Mechanical Engineering, Laval University, Quebec, QC G1V 0A6, Canada

Abstract

Abstract In this paper, possibilities for workspace enlargement and joint trajectory optimization of a (6 + 3)-degree-of-freedom kinematically redundant hybrid parallel robot are investigated. The inverse kinematic problem of the robot can be solved analytically, which is a desirable property of redundant robots, and is implemented in the investigations. A new method for detecting mechanical interferences between two links which are not directly connected is proposed for evaluating the workspace. Redundant degrees-of-freedom are optimized in order to further expand the workspace. An approach for determining the desired redundant joint coordinates is developed so that a performance index can be minimized approximately when the robot is following a prescribed Cartesian trajectory. The presented approaches are readily applicable to other kinematically redundant hybrid parallel robots proposed by the authors.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3