An Optimal Sensitivity-Enhancing Feedback Control Approach via Eigenstructure Assignment for Structural Damage Identification

Author:

Jiang L. J.1,Tang J.2,Wang K. W.1

Affiliation:

1. Department of Mechanical & Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802

2. Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269

Abstract

The concept of using sensitivity-enhancing feedback control to improve the performance of frequency-shift-based structural damage identification has been recently explored. In previous studies, however, the feedback controller is designed to alter only the closed-loop eigenvalues, and the effect of closed-loop eigenvectors on the sensitivity enhancement performance has not been considered. In this research, it is shown that the sensitivity of the natural frequency shift to the damage in a multi-degree-of-freedom structure can be significantly influenced by the placement of both the eigenvalues and the eigenvectors. A constrained optimization problem is formulated to find the optimal assignment of both the closed-loop eigenvalues and eigenvectors, and then an optimal sensitivity-enhancing control is designed to achieve the desired closed-loop eigenstructure. Another advantage of this scheme is that the dataset of frequency measurement for damage identification can be enlarged by utilizing a series of closed-loop controls, which can be realized by activating different combinations of actuators in the system. Therefore, by using this proposed idea of multiple sensitivity-enhancing feedback controls, we can simultaneously address the two major limitations of frequency-shift-based damage identification: the low sensitivity of frequency shift to damage effects and the deficiency of frequency measurement data. A series of case studies are performed. It is demonstrated that the sensitivity of natural frequency shift to stiffness reduction can be significantly enhanced by using the designed sensitivity-enhancing feedback control, where the optimal placement of closed-loop eigenvectors plays a very important role. It is further verified that such sensitivity enhancement can directly benefit the damage identification accuracy and robustness.

Publisher

ASME International

Subject

General Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3