A Two-Stage Approach for Damage Diagnosis of Structures Based on a Fully Distributed Strain Mode under Multigain Feedback Control

Author:

Zhou Zheng,Dong Kaizhi,Fang Ziwei,Liu YangORCID

Abstract

The application of distributed fiber sensing technology in civil engineering has been developed to obtain more accurate and reliable information for structural health monitoring (SHM). With this sensing technique, high-density strain data are provided to benefit the stability and robustness in a closed-loop damage detection method which has not yet been investigated. To address this concern, a two-stage approach for structural damage detection combining a modal strain energy-based index (MSEBI) method with a hybrid artificial neural network (ANN) and particle swarm optimization (PSO) algorithm is proposed. In this study, the fully distributed strain measurement is taken advantage of, and a strain-based, closed-loop system with multiple gains aggregated for damage sensitivity enhancement is established, by which high-precision damage location and quantification can be realized through the proposed two-stage method. For the first step, the closed-loop strain mode shapes are used to construct the MSEBI for damage localization. For the second step, we adopt the PSO algorithm to train the parameters (weights and biases) of the neural network in order to reduce the difference between the real and expected outputs and then use the trained network for quantifying the damage extent. Furthermore, validation is completed by contemplating a two-span, bridge-like structure.

Funder

Heilongjiang Provincial Key Research & Development Program

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3