Wheel Slip Control Using Sliding-Mode Technique and Maximum Transmissible Torque Estimation

Author:

Li Jianqiu1,Song Ziyou2,Shuai Zhibin2,Xu Liangfei2,Ouyang Minggao2

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China e-mail:

2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

Abstract

This paper presents the analysis and design of a novel traction control system (TCS) based on sliding-mode control (SMC) and maximum transmissible torque estimation (MTTE) technique, which is employed in four-wheel independent drive electric vehicles (EVs) without detecting the vehicle velocity and acceleration. The original MTTE technique is effective with regard to the antislip control; however, it cannot sufficiently utilize the adhesive force from the tire–road surface. In the proposed TCS algorithm, only front wheels are equipped with the MTTE technique, while rear wheels are equipped with the SMC technique. As a result, the front wheel is critically controlled by the MTTE technique. Thus, its rotary speed can be used to approximately estimate the chassis velocity and acceleration, which are key input parameters of the SMC. The rear wheel slip ratio can be therefore controlled by the SMC which is robust against uncertainties and disturbances of parameters for exploiting more transmissible friction force. In addition, the stability of MTTE is analyzed in this paper because an important parameter is neglected in the original MTTE technique. As a result, the stability condition is changed, and the MTTE is modified in the proposed TCS according to the new conclusion. A half four-wheel drive (4WD) EV model is initially built using matlab/simulink. This paper investigates the proposed TCS for various adhesive conditions involving abrupt change in road friction. Compared with the original MTTE technique, the comprehensive performance, particularly the acceleration ability, is significantly improved by the proposed controller. The simulation result validates the effectiveness and robustness of the proposed TCS.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3