A Data-Driven Framework for Buckling Analysis of Near-Spherical Composite Shells Under External Pressure

Author:

Doshi Mitansh1,Ning Xin1

Affiliation:

1. Department of Aerospace Engineering, The Pennsylvania State University, University Park, PA, 16802

Abstract

Abstract This paper presents a data-driven framework that can accurately predict the buckling loads of composite near-spherical shells (i.e., variants of regular icosahedral shells) under external pressure. This framework utilizes finite element simulations to generate data to train a machine learning regression model based on the open-source algorithm Extreme Gradient Boosting (XGBoost). The trained XGBoost machine learning model can then predict buckling loads of near-spherical shells with a small margin of error without time-consuming finite element simulations. Examples of near-spherical composite shells with various geometries and material layups demonstrate the efficiency and accuracy of the framework. The machine learning model removes the demanding hardware and software requirements on computing buckling loads of near-spherical shells, making it particularly suitable to users without access to those computational resources.

Funder

Pennsylvania State University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Roll SEED Roll: An Architectural Assessment of a Spherical Mobile Habitat for Mars (SEED _ Spherical Environment Exploration Device);Ozdemir,2016

2. Buckling Behaviour of Imperfect Spherical Shells Subjected to Different Load Conditions;Pedersen;Thin-Walled Struct.,1995

3. An Overview of Buckling and Ultimate Strength of Spherical Pressure Hull Under External Pressure;Pan;Mar. Struct.,2010

4. Interactions of Fisheries and Fishing Communities Related to Aquaculture;Stickney,2009

5. Planetary Balloons;Blamont;Exp. Astron.,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3