An Intelligent Model for Supercapacitors with a Graphene-Based Fractal Electrode to Investigate the Cyclic Voltammetry

Author:

Kati Nida1ORCID,Ucar Ferhat2ORCID

Affiliation:

1. Metallurgical and Materials Engineering Department, Faculty of Technology, Fırat University, Elazig 23200, Turkey

2. Software Engineering Department, Faculty of Technology, Fırat University, Elazig 23200, Turkey

Abstract

The aim of this study was to investigate the performance measurement of supercapacitors using the electrochemical properties of cyclic voltammetry (CV). The use of CV is crucial in evaluating the electrochemical performance of supercapacitors and determining the surface area of the catalyst with regard to the fractal properties of the electrode. The study specifically focused on the CV behavior of a supercapacitor formed by a cobalt-doped ceria/reduced graphene oxide (Co-CeO2/rGO) fractal nanocomposite, and its assessment was conducted using a machine learning (ML) model with the enhanced XGBoost. The model was trained using an experimental open-source dataset. The results showed that the proposed XGBoost model had a superior ability to predict the CV behavior of the supercapacitor, with nearly perfect results for the MAE, RMSE, and R-squared metrics, which are effective at evaluating the performance of regression models. With the successful design of the proposed intelligent prediction model, the study is expected to provide valuable insights into forming novel nanocomposite forms with high accuracy and minimal need for experiments.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Fractional Calculus in Predicting the Temperature-Dependent Creep Behavior of Concrete;Fractal and Fractional;2024-08-18

2. A comparative study of fractional-order models for supercapacitors in electric vehicles;International Journal of Electrochemical Science;2024-01

3. An Improved Fractional Model of an Electrochemical Capacitor with Accounting of Relaxation Phenomena;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3