Application of Fractional Calculus in Predicting the Temperature-Dependent Creep Behavior of Concrete

Author:

Chen Jiecheng1,Gong Lingwei1ORCID,Meng Ruifan1ORCID

Affiliation:

1. School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China

Abstract

Creep is an essential aspect of the durability and longevity of concrete structures. Based on fractional-order viscoelastic theory, this study investigated a creep model for predicting the temperature-dependent creep behavior of concrete. The order of the proposed fractional-order creep model can intuitively reflect the evolution of the material characteristics between solids and fluids, which provides a quantitative way to directly reveal the influence of loading conditions on the temperature-dependent mechanical properties of concrete during creep. The effectiveness of the model was verified using the experimental data of lightweight expansive shale concrete under various temperature and stress conditions, and the comparison of the results with those of the model in the literature showed that the proposed model has good accuracy while maintaining simplicity. Further analysis of the fractional order showed that temperature, not stress level, is the key factor affecting the creep process of concrete. At the same temperature, the fractional order is almost a fixed value and increases with the increase in temperature, reflecting the gradual softening of the mechanical properties of concrete at higher temperature. Finally, a novel prediction formula containing the average fractional-order value at each temperature was established, and the creep deformation of concrete can be predicted only by changing the applied stress, which provides a simple and practical method for predicting the temperature-dependent creep behavior of concrete.

Funder

Regional Joint Fund-Youth Fund Projects of the Guangdong Basic and Applied Basic Research Foundation

Basic and Applied Basic Research Project of Guangzhou Basic Research Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3