Experimental and theoretical evidence for the load sequence effect in the compressive fatigue behavior of concrete

Author:

Baktheer AbedulgaderORCID,Chudoba RostislavORCID

Abstract

AbstractA realistic prediction of the concrete fatigue life exposed to high-cycle loading scenarios with variable amplitudes is of utmost importance for a reliable and economically efficient design of civil engineering infrastructure for transport and energy supply. Current design codes estimate the fatigue life under variable amplitudes using the Palmgren–Miner rule, which assumes a linear scaling between lifetimes measured for uniform cyclic loading scenarios. Several experimental series conducted in the past, however, indicate that this assumption is not valid and that it may lead to unsafe design. In this paper, an experimental and theoretical investigations of the fatigue loading sequence effect in normal- and high-strength concrete behavior are presented, which confirm this observation. In particular, a test campaign with 135 cylinder specimens, including three concrete grades and six different loading scenarios has been conducted. Several response characteristics of the fatigue behavior including Wöhler curves, fatigue creep curves and evolving shapes of hysteretic loops have been evaluated. To substantiate the experimental results, a theoretical explanation of the observed sequence effect is formulated based on the assumption, that energy is dissipated uniformly within the volume of a test specimen during subcritical, compressive cyclic loading. Then, superposition of energy dissipation profiles along the lifetime measured for constant amplitudes becomes possible and a theoretical justification of the experimentally observed sequence effect can be provided. Moreover, a reverse sequence effect reported in the literature for bending fatigue of concrete can then be explained by an unevenly distributed energy dissipation over a cracked specimen. Supported by the theoretical consideration, the processed experimental data is used to validate existing fatigue life assessment rules by testing their ability to reflect the load sequence effect.

Funder

Bundesministerium fr Wirtschaft und Energie

Deutsche Forschungsgemeinschaft

RWTH Aachen

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3