General Layouts of Supercritical-Water NPPs

Author:

Pioro I.1,Naidin M.1,Mokry S.1,Saltanov Eu.1,Peiman W.1,King K.1,Farah A.1,Thind H.1

Affiliation:

1. University of Ontario Institute of Technology, Oshawa, ON, Canada

Abstract

Currently, there are a number of Generation IV SuperCritical Water-cooled nuclear Reactor (SCWR) concepts under development worldwide. The main objectives for developing and utilizing SCWRs are: 1) Increase gross thermal efficiency of current Nuclear Power Plants (NPPs) from 30–35% to approximately 45–50%, and 2) Decrease capital and operational costs and, in doing so, decrease electrical-energy costs. SuperCritical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625°C). Additionally, SCWRs will have a simplified flow circuit in which steam generators, steam dryers, steam separators, etc. will be eliminated. Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermo-chemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. To decrease significantly the development costs of an SCW NPP, to increase its reliability, and to achieve similar high thermal efficiencies as the advanced fossil-fired steam cycles, it should be determined whether SCW NPPs can be designed with a steam-cycle arrangement that closely matches that of mature SuperCritical (SC) fossil-fired thermal power plants (including their SC-turbine technology). The state-of-the-art SC-steam cycles at fossil-fired power plants are designed with a single-steam reheat and regenerative feedwater heating. Due to this, they reach thermal steam-cycle efficiencies up to 54% (i.e., net plant efficiencies of up to 43–50% on a Higher Heating Value (HHV) basis). This paper presents several possible general layouts of SCW NPPs, which are based on a regenerative-steam cycle. To increase the thermal efficiency and to match current SC-turbine parameters, the cycle also includes a single steam-reheat stage. Since these options include a nuclear steam-reheat stage, the SCWR is based on a pressure-tube design.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3