Development of Kinetic Models for the Long-Term Corrosion Behavior of Candidate Alloys for the Canadian SCWR

Author:

Steeves G.1,Cook W.1

Affiliation:

1. Department of Chemical Engineering, University of New Brunswick, 15 Dineen Drive, Fredericton, NB E3B 5A3, Canada e-mail:

Abstract

Corrosion behavior of Inconel 625 and Incoloy 800H, two of the candidate fuel cladding materials for Canadian supercritical water-cooled reactor (SCWR) designs, was evaluated by exposing the metals to supercritical water (SCW) in the University of New Brunswick’s flow loop. A series of experiments were conducted over a range of temperatures between 370 °C and 600 °C, and the corrosion rates were evaluated as the weight change of the materials over the exposure time (typical experiments measured the weight change at intervals of 100, 250, and 500 h, with some longer-term exposures included). Scanning electron microscopy (SEM) was used to examine and quantify the oxide films formed during exposure and the corrosion mechanisms occurring on the candidate metals. Data from in-house experiments were used to create an empirical kinetic equation for each material that was then compared to literature values of weight change. Dissolved oxygen concentrations varied between experimental sets, but for simplicity were ignored since the effect of dissolved oxygen has been demonstrated to be a minor secondary effect. Activation energies for the alloys were determined with Inconel 625 and Incoloy 800 H showing a distinct difference between the low-temperature electrochemical corrosion (EC) mechanism and direct high-temperature chemical oxidation (CO). The results were modeled using these separate effects showing dependence on the bulk density and dielectric constant of the supercritical water through the hydrogen ion concentration.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

New Brunswick Innovation Foundation

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3