A One-Dimensional Viscous-Inviscid Strong Interaction Model for Flow in Indented Channels With Separation and Reattachment

Author:

Kalse S. G. C.1,Bijl H.1,van Oudheusden B. W.1

Affiliation:

1. Department of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract

A new one-dimensional model is presented for the calculation of steady and unsteady flow through an indented two-dimensional channel with separation and reattachment. It is based on an interactive boundary layer approach, where the equations for the boundary layer flow near the channel walls and for an inviscid core flow are solved simultaneously. This approach requires no semi-empirical inputs, such as the location of separation and reattachment, which is an advantage over other existing one-dimensional models. Because of the need of an inviscid core alongside the boundary layers, the type of inflow as well as the length of the channel and the value of the Reynolds number poses some limitations on the use of the new model. Results have been obtained for steady flow through the indented channel of Ikeda and Matsuzaki. In further perspective, it is discussed how the present model, in contrast to other one-dimensional flow models, can be extended to calculate the flow in nonsymmetrical channels, by considering different boundary layers on each of the walls.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of channel asymmetry on the behavior of flow passing through the glottis;Acoustical Science and Technology;2012

2. Voice production model integrating boundary-layer analysis of glottal flow and source-filter coupling;The Journal of the Acoustical Society of America;2011-03

3. Low-dimensional models of the glottal flow incorporating viscous-inviscid interaction;The Journal of the Acoustical Society of America;2009-01

4. On the viscous-inviscid interaction of the flow passing through the glottis;Acoustical Science and Technology;2008

5. Asymmetrical effects in a 2D stenosis;European Journal of Mechanics - B/Fluids;2007-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3