Steady Flow in Collapsible Tubes

Author:

Shapiro Ascher H.1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Mass.

Abstract

The one-dimensional theory of steady flow in a thin-walled tube, partially collapsed by a negative transmural pressure difference, is developed in a general way. The mechanics of the flow is closely coupled to the mechanics of the tube. The latter is characterized by a “tube law”: the relationship between cross-sectional area and transmural pressure difference. Features analogous to those in gas dynamics and free-surface flow may manifest themselves: a characteristic wave propagation speed; opposite phenomena at flow speeds, respectively, less than and greater than the wave speed; choking; and shocklike transitions. There are many practical examples of such flows, mainly in physiology and medicine. The one-dimensional, steady analysis includes the effects of friction, lengthwise variations in external pressure, variations in elevation, resting area, wall stiffness, and mechanical properties. The speed index S (ratio of flow speed to wave speed), analogous to the Mach and Froude numbers, appears naturally in the results as a controlling parameter of behavior. Various practical ways of passing continuously from subcritical (S < 1) to supercritical (S > 1)speed are suggested. A preliminary theory of shocklike, dissipative transitions is developed, the results of which depend sensitively on the tube law. Explicit working formulas are developed for several simple types of flow (friction alone; changes in rest area alone; changes in external pressure or elevation alone) for a simple, approximate tube law. Various modes of flow behavior for a flow affected by both friction and gravity are explored.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 329 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3