Effects of Outlet Boundary Conditions on the Reacting Flow Field in a Swirl-Stabilized Burner at Dry and Humid Conditions

Author:

Terhaar Steffen1,Bobusch Bernhard C.1,Paschereit Christian Oliver1

Affiliation:

1. Chair of Fluid Dynamics Hermann-Föttinger-Institut, Technische Universität Berlin, Müller-Breslau-Str. 8, 10623 Berlin, Germany

Abstract

During the design and testing process of swirl-stabilized combustors, it is often impractical to maintain identical outlet boundary conditions. Furthermore, it is a common practice to intentionally change the acoustic boundary conditions of the outlet in order to suppress thermoacoustic instabilities. In the presented work the susceptibility of the reacting flow field to downstream perturbations is assessed by the application of an area contraction at the outlet. Since combustion and fuel composition are shown to be important parameters for the influence of the boundary conditions on the flow field, highly steam diluted flames are investigated in addition to dry flames at different equivalence ratios and degrees of swirl. The applied measurement techniques include particle image velocimetry, laser doppler velocimetry, and emission analysis. The results reveal a clear correlation of the susceptibility of the flow field to downstream perturbations to both the inlet swirl number and the amount of dilatation caused by the flame. The concept of an effective swirl number downstream of the flame is applied to the results and is proven to be the dominating parameter. A theoretical explanation for the influence of this parameter is provided by the usage of the well known theory of subcritical and supercritical swirling flows, where perturbations can propagate upstream solely in subcritical flows via standing waves. Knowledge of the flow state is of particular importance for the evaluation of combustion tests with differing exit boundary conditions and the results emphasize the need for realistic exit boundary conditions for numerical simulations.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3