Thermoacoustic Modeling of a Gas Turbine Using Transfer Functions Measured Under Full Engine Pressure

Author:

Schuermans Bruno1,Guethe Felix1,Pennell Douglas1,Guyot Daniel2,Paschereit Christian Oliver2

Affiliation:

1. Alstom (Switzerland) Ltd., CH-5405 Baden, Switzerland

2. Hermann-Föttinger-Institute, Technische Universität Berlin, 10623 Berlin, Germany

Abstract

Thermoacoustic transfer functions of a full-scale gas turbine burner operating under full engine pressure have been measured. The excitation of the high-pressure test facility was done using a siren that modulated a part of the combustion airflow. Pulsation probes have been used to record the acoustic response of the system to this excitation. In addition, the flame’s luminescence response was measured by multiple photomultiplier probes and a light spectrometer. Three techniques to obtain the thermoacoustic transfer function are proposed and employed: two acoustic-optical techniques and a purely acoustic technique. The first acoustical-optical technique uses one single optical signal capturing the chemiluminescence intensity of the flame as a measure for the heat release in the flame. This technique only works if heat release fluctuations in the flame have only one generic source, e.g., equivalence ratio or mass flow fluctuations. The second acoustic-optical technique makes use of the different response of the flame’s luminescence at different optical wavelengths bands to acoustic excitation. It also works, if the heat release fluctuations have two contributions, e.g., equivalence ratio and mass flow fluctuation. For the purely acoustic technique, a new method was developed in order to obtain the flame transfer function, burner transfer function, and flame source term from only three pressure transducer signals. The purely acoustic method could be validated by the results obtained from the acoustic-optical techniques. The acoustic and acoustic-optical methods have been compared and a discussion on the benefits and limitations of each is given. The measured transfer functions have been implemented into a nonlinear, three-dimensional, time domain network model of a gas turbine with an annular combustion chamber. The predicted pulsation behavior shows a good agreement with pulsation measurements on a field gas turbine.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference14 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3