Influence of Two External Excitations for Brake Stick-Slip Behavior Using New Numerical Calculation Method

Author:

Liu Fuhao1,Li Hongguang2,Jiang Hanjun3,Jiang Suyu4

Affiliation:

1. School of Mechanical Engineering, Qingdao University of Technology, Qingdao 266033, China; College of Automobile Engineering, Yancheng Institute of Technology, Jiangshu 224051, China

2. Department of Engineering Mechanics, Shanghai Jiao Tong University, Shanghai 200240, China

3. School of Mechanical Engineering, Qingdao University of Technology, Qingdao 266033, China

4. College of Automobile Engineering, Yancheng Institute of Technology, Jiangshu 224051, China

Abstract

Abstract In this paper, a dynamic brake model has been constructed by incorporating the brake rotor's speed and the brake normal force as excitation sources. By introducing two permissible errors (ε1,2), a novel computation algorithm is proposed to reduce the ill-conditioning, arising from the nonlinear friction. Its validation illustrates that the proposed method, using double-changed time-steps and smarter adaptive time-step reduced method, is more reliable than other integral equation solvers with a higher accuracy as well as less computation time. Moreover, the influences of external excitations on the dynamic characteristic of the brake system are also analyzed, and an estimation for the occurrence of unstable vibration is investigated. The results demonstrate the different contributions of the two external excitations on the dynamic characteristic. The brake system has more unstable vibration at a higher brake normal force and a lower brake rotor's speed with small fluctuation. Furthermore, the higher brake rotor's speed could generate more positive damping effect, which could reduce and suppress the occurrence of the sick-slip vibrations. In practice, these instabilities can be minimized by appropriate selection of the two external, which can be adjusted according to the advanced working requirements.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3