Sustainable Fabrication of Glass Nanostructures Using Infrared Transparent Mold Assisted by CO2 Laser Scanning Irradiation

Author:

Bin Mohd Zawawi Mohd Zairulnizam1,Kim Taekyung2,Jung Myungki3,Im Jaehun1,Kang Shinill1

Affiliation:

1. School of Mechanical Engineering, National Center for Optically-Assisted Mechanical Systems, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea e-mail:

2. National Center for Optically-Assisted Mechanical Systems, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea e-mail:

3. National Center for Optically-Assisted Mechanical Systems, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea e-mail:

Abstract

Direct thermal imprinting of nanostructures on glass substrates is reliable when manufacturing net-shaped glass devices with various surface functions. However, several problems are recognized, including a long thermal cycle, tedious optimization, difficulties in ensuring high level replication fidelity, and unnecessary thermal deformation of the glass substrate. Here, we describe a more sustainable and energy efficient method for direct thermal imprinting of nanostructures onto glass substrates; we use silicon mold transparent to infrared between 2.5 and 25 μm in wavelength combined with CO2 laser scanning irradiation. The glass strongly absorbed the 10.6 μm wavelength irradiation, triggering substantial heating of a thin layer on the glass surface, which significantly enhanced the filling of pressed glass material into nanostructured silicon mold cavities. For comparison, we conducted conventional direct glass thermal imprinting experiments, further emphasizing the advantages of our new method, which outperformed conventional methods. The thermal mass cycle was shorter and the imprint pattern quality and yield, higher. Our method is sustainable, allowing more rapid scalable fabrication of glass nanostructures using less energy without sacrificing the quality and productivity of the fabricated devices.

Funder

Ministry of Science ICT and Future Planning

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3