Numerical Simulation Assisted Curve Compensation in Compression Molding of High Precision Aspherical Glass Lenses

Author:

Wang Fei1,Chen Yang2,Klocke Fritz1,Pongs Guido1,Yi Allen Y.2

Affiliation:

1. Fraunhofer Institute for Production Technology IPT, Steinbachstr. 17, 52074 Aachen, Germany

2. Department of Industrial, Welding and Systems Engineering, The Ohio State University, 210 Baker Systems, 1971 Neil Avenue, Columbus, OH 43210

Abstract

Compression molding is an effective high volume and net-shape fabrication method for aspherical lenses and precision glass optical components in general. Geometrical deviation (or curve change as often referred to in industry) incurred during heating, molding, and cooling processes is a critically important manufacturing quality parameter. In the compression glass molding process, there are many factors that could lead to curve change in final products, such as thermal expansion, stress and structural relaxation, and inhomogeneous temperature distribution inside the molding machine. In this research, an integrated numerical simulation scheme was developed to predict curve change in molded glass aspherical lenses. The geometrical deviation in the final lens shape was analyzed using both an experimental approach and a numerical simulation with a finite element method program. Specifically, numerical simulation was compared with experimental results to validate the proposed manufacturing approach. The measurements showed that the difference between numerical simulation and experimental results was less than 2 μm. Based on the comparison, the mold curve was revised using numerical simulation in order to produce more accurate lens shapes. The glass lenses molded using the compensated molds showed a much better agreement with the design value than the lenses molded without compensation. It has been demonstrated in this research that numerical simulation can be used to predict the final geometrical shape of compression molded precision glass components. This research provided an opportunity for optical manufacturers to achieve a lower production cost and a shorter cycle time.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference13 articles.

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3