Modeling the Effects of Variable Intake Valve Timing on Diesel HCCI Combustion at Varying Load, Speed, and Boost Pressures
Author:
Genzale C. L.1, Kong S.-C.2, Reitz R. D.1
Affiliation:
1. Engine Research Center, Department of Mechanical Engineering, University of Wisconsin—Madison, 1500 Engineering Drive, Madison, WI 53705 2. Department of Mechanical Engineering, Iowa State University, 3028 Black Engineering Building, Ames, IA 50011
Abstract
Homogeneous charge compression ignition (HCCI) operated engines have the potential to provide the efficiency of a typical diesel engine, with very low NOx and particulate matter emissions. However, one of the main challenges with this type of operation in diesel engines is that it can be difficult to control the combustion phasing, especially at high loads. In diesel HCCI engines, the premixed fuel-air charge tends to ignite well before top dead center, especially as load is increased, and a method of delaying the ignition is necessary. The development of variable valve timing (VVT) technology may offer an important advantage in the ability to control diesel HCCI combustion. VVT technology can allow for late intake valve closure (IVC) times, effectively changing the compression ratio of the engine. This can decrease compression temperatures and delay ignition, thus allowing the possibility to employ HCCI operation at higher loads. Furthermore, fully flexible valve trains may offer the potential for dynamic combustion phasing control over a wide range of operating conditions. A multidimensional computational fluid dynamics model is used to evaluate combustion event phasing as both IVC times and operating conditions are varied. The use of detailed chemical kinetics, based on a reduced n-heptane mechanism, provides ignition and combustion predictions and includes low-temperature chemistry. The use of IVC delay is demonstrated to offer effective control of diesel HCCI combustion phasing over varying loads, engine speeds, and boost pressures. Additionally, as fueling levels are increased, charge mixture properties are observed to have a significant effect on combustion phasing. While increased fueling rates are generally seen to advance combustion phasing, the reduction of specific heat ratio in higher equivalence ratio mixtures can also cause noticeably slower temperature rise rates, affecting ignition timing and combustion phasing. Variable intake valve timing may offer a promising and flexible control mechanism for the phasing of diesel HCCI combustion. Over a large range of boost pressures, loads, and engine speeds, the use of delayed IVC is shown to sufficiently delay combustion in order to obtain optimal combustion phasing and increased work output, thus pointing towards the possibility of expanding the current HCCI operating range into higher load points.
Publisher
ASME International
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Reference21 articles.
1. United States Environmental Protection Agency, www.epa.gov. 2. A Computational Study of the Effect of Fuel-Type on Ignition Time in HCCI Engines;Kelly-Zion 3. Akagawa, H., Miyamoto, T., Harada, A., Sasaki, S., Shimazaki, N., Hashizume, T., and Tsujimura, K., 1999, “Approaches to Solve Problems of the Premixed Lean Diesel Combustion,” SAE Paper No. 1999-01-0183. 4. Haraldsson, G., Tunestal, P., Johannson, B., and Hyvonen, J., 2002, “HCCI Combustion Phasing in a Multi Cylinder Engine Using Variable Compression Ratio,” SAE Paper No. 2002-01-2858. 5. Kaneko, N., Ando, H., Ogawa, H., and Miyamoto, N., 2002, “Expansion of the Operating Range With In-Cylinder Water Injection in a Premixed Charge Compression Ignition Engine,” SAE Paper No. 2002-01-1743.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|