On Rate Boundary Conditions for Soft Tissue Bifurcation Analysis

Author:

Emuna Nir1,Durban David1

Affiliation:

1. Faculty of Aerospace Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel e-mail:

Abstract

Mechanical instability of soft tissues can either risk their normal function or alternatively trigger patterning mechanisms during growth and morphogenesis processes. Unlike standard stability analysis of linear elastic bodies, for soft tissues undergoing large deformations it is imperative to account for the nonlinearities induced by the coupling between load and surface changes at onset of instability. The related issue of boundary conditions, in context of soft tissues, has hardly been addressed in the literature, with most of available research employing dead-load conditions. This paper is concerned with the influence of imposed homogeneous rate (incremental) surface data on critical loads and associated modes in soft tissues, within the context of linear bifurcation analysis. Material behavior is modeled by compressible isotropic hyperelastic strain energy functions (SEFs), with experimentally validated material parameters for the Fung–Demiray SEF, over a range of constitutive response (including brain and liver tissues). For simplicity, we examine benchmark problems of basic spherical patterns: full sphere, spherical cavity, and thick spherical shell. Limiting the analysis to primary hydrostatic states we arrive at universal closed-form solutions, thus providing insight on the role of imposed boundary data. Influence of selected rate boundary conditions (RBCs) like dead-load and fluid-pressure (FP), coupled with constitutive parameters, on the existence and levels of bifurcation loads is compared and discussed. It is argued that the selection of the appropriate type of homogeneous RBC can have a critical effect on the level of bifurcation loads and even exclude the emergence of bifurcation instabilities.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3