Instability of Incompatible Bilayered Soft Tissues and the Role of Interface Conditions

Author:

Emuna Nir1,Durban David1

Affiliation:

1. Faculty of Aerospace Engineering, Technion—Israel Institute of Technology, Haifa 32000, Israel e-mail:

Abstract

Mechanical stability analysis is instructive in explaining biological processes like morphogenesis, organogenesis, and pathogenesis of soft tissues. Consideration of the layered, residually stressed structure of tissues, requires accounting for the joint effects of interface conditions and layer incompatibility. This paper is concerned with the influence of imposed rate (incremental) interface conditions (RICs) on critical loads in soft tissues, within the context of linear bifurcation analysis. Aiming at simplicity, we analyze a model of bilayered isotropic hyperelastic (neo-Hookean) spherical shells with residual stresses generated by “shrink-fitting” two perfectly bonded layers with radial interfacial incompatibility. This setting allows a comparison between available, seemingly equivalent, interface conditions commonly used in the literature of layered media stability. We analytically determine the circumstances under which the interface conditions are equivalent or not, and numerically demonstrate significant differences between interface conditions with increasing level of layer incompatibility. Differences of more than tenfold in buckling and 30% in inflation instability critical loads are recorded using the different RICs. Contrasting instability characteristics are also revealed using the different RICs in the presence of incompatibility: inflation instability can occur before pressure maximum, and spontaneous instability may be excluded for thin shells. These findings are relevant to the growing body of stability studies of layered and residually stressed tissues. The impact of interface conditions on critical thresholds is significant in studies that use concepts of instability to draw conclusions about the normal development and the pathologies of tissues like arteries, esophagus, airways, and the brain.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3