Time-Dependent System Kinematic Reliability Analysis for Robotic Manipulators

Author:

Zhao Qiangqiang1,Guo Junkang1,Zhao Dingtang1,Yu Dewen1,Hong Jun1

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi’an Jiaotong University, Xianning West Road, Xi’an 710049, China

Abstract

Abstract Time-dependent system kinematic reliability of robotic manipulators, referring to the probability of the end-effector’s pose error falling into the specified safe boundary over the whole motion input, is of significant importance for its work performance. However, investigations regarding this issue are quite limited. Therefore, this work conducts time-dependent system kinematic reliability analysis defined with respect to the pose error for robotic manipulators based on the first-passage method. Central to the proposed method is to calculate the outcrossing rate. Given that the errors in robotic manipulators are very small, the closed-form solution to the covariance of the joint distribution of the pose error and its derivative is first derived by means of the Lie group theory. Then, by decomposing the outcrossing event of the pose error, calculating the outcrossing rate is transformed into a problem of determining the first-order moment of a truncated multivariate Gaussian. Then, based on the independent assumption that the outcrossing events occur independently, the analytical formula of the outcrossing rate is deduced for the stochastic kinematic process of robotic manipulators via taking advantage of the moment generating function of the multivariate Gaussian, accordingly leading to achievement of the time-dependent system kinematic reliability. Finally, a six-degrees-of-freedom (6-DOF) robotic manipulator is used to demonstrate the effectiveness of the proposed method by comparison with the Monte Carlo simulation and finite-difference-based outcrossing rate method.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3