Conjugate Heat Transfer Simulation and Entropy Generation Analysis of Gas Turbine Blades

Author:

Ju Yaping1,Feng Yi1,Zhang Chuhua1

Affiliation:

1. School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China

Abstract

Abstract Reynolds-averaged Navier–Stokes (RANS) model-based conjugate heat transfer (CHT) method is so far popularly used in simulations and designs of internally cooled gas turbine blades. One of the important factors influencing the RANS-based CHT method's prediction accuracy is the choice of turbulence models for different fluid regions because the blade passage flow and internal cooling have considerably different flow features. However, most studies in the open literature adopted the same turbulence models in the blade passage flow and internal cooling. Another important issue is the comprehensive evaluation of the losses caused by the flow and heat transfer for both fluid and solid regions. In this study, a RANS-based CHT solver suitable for subsonic/transonic flows was developed based on OpenFOAM and then validated and used to explore suitable RANS turbulence model combinations for internally cooled gas turbine blades. Entropy generation, being able to weigh the losses caused by both flow friction and heat transfer, was used in the analyses of two vanes with smooth and ribbed cooling ducts to reveal the loss mechanisms. Findings indicate that the combination of the k–ω SST–γ–Reθ transition model for passage flow and the standard k–ε model for internal cooling provided the best agreement with measurement data. The relative error of vane surface dimensionless temperature was less than 3%. The variations of entropy generation with different internal cooling inlet velocities and temperatures indicate that reducing entropy generation was contradictory with enhancing heat transfer performance. This study, which provides a reliable computing tool and a comprehensive performance parameter, has an important application value for the design of advanced internally cooled gas turbine blades.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference30 articles.

1. Evolution of Turbine Cooling,2017

2. Large-Eddy Simulation and Conjugate Heat Transfer Around a low-Mach Turbine Blade;ASME J. Turbomach.,2014

3. High-Pressure Gas Turbine Vane Turbulent Flows and Heat Transfer Predicted by RANS/LES/DES,2017

4. Conjugate Heat Transfer Analysis of NASA C3X Film Cooled Vane With an Object-Oriented CFD Code,2010

5. An Assessment of Turbulence Models for Prediction of Conjugate Heat Transfer for a Turbine Vane With Internal Cooling Channels;Heat Trans. Res.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3