Solderability and Reliability of Sintered Nano-Ag Bond Pads of Printed Re-Distribution Layer (RDL)

Author:

Lee S. W. R.1,Lo J. C. C.1,Qiu X.1,Tu N.1

Affiliation:

1. Hong Kong University of Science & Technology, Kowloon, Hong Kong (Greater China)

Abstract

Abstract Re-distribution layer (RDL) is one key enabling technology for advance packaging. RDL is usually fabricated in wafer level by photolithography process. An alternative approach for implementing RDL by additive manufacturing (AM) method is proposed in this study. This allows RDL to be fabricated on singulation chip. Nano-silver (nano-Ag) ink is printed on the silicon chip to form routing traces and bond pads. However, the Ag pad may be consumed by solder quickly if the process is not properly controlled. This paper studied the effect of nano-Ag ink sintering condition on the solderability of Ag pad. The solder joint mechanical integrity was evaluated by solder ball shear test. High temperature storage test was also carried out to evaluate the solder joint reliability. Experiment results showed that Ag pad fabricated by AM is SMT compatible. High temperature storage did not cause early failure to the samples. There was not significant change in the Ag3Sn IMC layer thickness and mechanical strength. The finding of the present study will serve as a very useful reference for future practice of forming solder joints on sintered nano-Ag pads.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal-mechanical Reliability of Sintered Nano-Ag Bond Pads Printed by Aerosol Jet;2022 23rd International Conference on Electronic Packaging Technology (ICEPT);2022-08-10

2. Solderability Analysis of Inkjet-printed Silver Pads with SAC Solder Joints;2022 International Conference on Electronics Packaging (ICEP);2022-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3