Liquid to Liquid Cooling for High Heat Density Liquid Cooled Data Centers

Author:

Heydari Ali1,Shahi Pardeep1,Radmard Vahideh1,Eslami Bahareh1,Chowdhury Uschas1,Saini Satyam2,Bansode Pratik2,Miyamura Harold1,Agonafer Dereje2,Rodriguez Jeremy1

Affiliation:

1. Nvidia , Santa Clara, California, United States

2. University of Texas at Arlington , Arlington, Texas, United States

Abstract

Abstract Removal of heat is becoming a major challenge in today’s data centers. Computing-intensive applications such as artificial intelligence and machine learning are pushing data center to compute intensive systems, such as GPU, CPU, and switches to their extreme limits. Racks of IT can approach up to 100kW of heat dissipation challenging traditional data center designs for enterprises and cloud service providers. Direct-to-chip liquid cooling utilizing cold plates is becoming a common method of removing heat from high heat density data center server racks. There are various methods of applying liquid cooling to data centers to address the high heat density components such as liquid to liquid (L2L), liquid to air (L2A), and liquid to single phase refrigerant (L2R). This study aims to investigate the thermo-hydraulic performance of the L2L cooling systems using cooling distribution units (CDUs). CDUs provide a cold secondary coolant (Propylene Glycol 25%) into the cooling loops of liquid-cooled server racks, with the CDUs providing liquid to liquid heat exchange between the primary facility water and secondary liquid used for cold plates. This study uses Thermal Test Vehicles (TTVs) which have been built to reproduce and simulate high heat density servers. Four different cooling loops are characterized experimentally, and detailed analytical and numerical simulations using CFD are developed for analyzing the cooling characteristics of the entire L2L cooling loop, including the CDU, for removing heat from the cold plates. Detailed Flow Network Modeling (FNM) has been performed to analyze precise hydraulic modeling of the secondary fluid flow, from the CDUs to the cooling loops, for predicting pressure drop and flow rate of the secondary coolant. A FNM properly sizes the pumping requirements of the L2L cooling system. Additionally, a system calculator has been created for quickly sizing all secondary loop piping for L2L heat exchanger deployments.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental evaluation of direct-to-chip cold plate liquid cooling for high-heat-density data centers;Applied Thermal Engineering;2024-02

2. Measuring the Surface Flatness of Heaters and Cold plates and Estimating its Effect on Heat Transfer;2023 22nd IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm);2023-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3