An Investigation of the Mechanics of Tactile Sense Using Two-Dimensional Models of the Primate Fingertip

Author:

Srinivasan M. A.1,Dandekar K.1

Affiliation:

1. Department of Mechanical Engineering and, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

Tactile information about an object in contact with the skin surface is contained in the spatiotemporal load distribution on the skin, the corresponding stresses and strains at mechanosensitive receptor locations within the skin, and the associated pattern of electrical impulses produced by the receptor population. At present, although the responses of the receptors to known stimuli can be recorded, no experimental techniques exist to observe either the load distribution on the skin or the corresponding stress-state at the receptor locations. In this paper, the role of mechanics in the neural coding of tactile information is investigated using simple models of the primate fingertip. Four models that range in geometry from a semi-infinite medium to a cylindrical finger with a rigid bone, and composed of linear elastic media, are analyzed under plane strain conditions using the finite element method. The results show that the model geometry has a significant influence on the surface load distribution as well as the subsurface stress and strain fields for a given mechanical stimulus. The elastic medium acts like a spatial low pass filter with the property that deeper the receptor location, the more blurred the tactile information. None of the models predicted the experimentally observed surface deflection profiles under line loads as closely as a simple heterogeneous waterbed model that treated the fingerpad as a membrane enclosing an incompressible fluid (Srinivasan, 1989). This waterbed model, however, predicted a uniform state of stress inside the fingertip and thus failed to explain the spatial variations observed in the neural response. For the cylindrical model indented by rectangular gratings, the maximum compressive strain and strain energy density at typical receptor locations emerged as the two strain measures that were directly related to the electrophysiologically recorded response rate of slowly adapting type I (SAI) mechanoreceptors. Strain energy density is a better candidate to be the relevant stimulus for SAIs, since it is a scalar that is invariant with respect to receptor orientations and is a direct measure of the distortion of the receptor caused by the loads imposed on the skin.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference18 articles.

1. Boussinesq, J., 1985, Application des Potentials a´ I’Etude de l’Equilibre et du mouvement des Solides Elastiques Gauthier-Villars, Paris.

2. Cook, T. H., 1975, “The Mechanical Characterization of Human Skin In Vivo,” PhD thesis, Stevens Institute of Technology, Castle Point, Hoboken, NJ.

3. Danielson D. A. , 1984, “Human Skin as an Elastic Membrane,” J. Biomechanics, Vol. 6, pp. 539–546, 1973.

4. Darian-Smith, I., “The Sense of Touch: Performance and Peripheral Neural Processes,” Handbook of Physiology - The Nervous System—III, pp. 739–788.

5. Fung, Y. C., 1981, Biomechanics. Springer, New York.

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3