Sensory neuron activation from topical treatments modulates the sensorial perception of human skin

Author:

Bennett-Kennett Ross1,Pace Joseph2,Lynch Barbara3,Domanov Yegor3ORCID,Luengo Gustavo S3ORCID,Potter Anne3ORCID,Dauskardt Reinhold H1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Stanford University , Stanford, CA 94305 , USA

2. Department of Mechanical Engineering, Stanford University , Stanford, CA 94305 , USA

3. L’Oréal Research and Innovation , Aulnay-sous-Bois 93601 , France

Abstract

Abstract Neural signaling of skin sensory perception from topical treatments is often reported in subjective terms such as a sensation of skin “tightness” after using a cleanser or “softness” after applying a moisturizer. However, the mechanism whereby cutaneous mechanoreceptors and corresponding sensory neurons are activated giving rise to these perceptions has not been established. Here, we provide a quantitative approach that couples in vitro biomechanical testing and detailed computational neural stimulation modeling along with a comprehensive in vivo self-assessment survey to demonstrate how cutaneous biomechanical changes in response to treatments are involved in the sensorial perception of the human skin. Strong correlations are identified between reported perception up to 12 hours post treatment and changes in the computed neural stimulation from mechanoreceptors residing deep under the skin surface. The study reveals a quantitative framework for understanding the biomechanical neural activation mechanism and the subjective perception by individuals.

Funder

L’Oreal Research & Innovation, Aulnay-sous-Bois, France

Publisher

Oxford University Press (OUP)

Reference76 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skin viscoelasticity effects on the periodic mechanical stimuli propagation between skin layers;Journal of the Mechanical Behavior of Biomedical Materials;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3