Towards Efficient Fully-Nonlinear Potential-Flow Solvers in Marine Hydrodynamics

Author:

Shao Yan-Lin1,Faltinsen Odd M.1

Affiliation:

1. Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Solving potential-flow problems using the Boundary Element Method (BEM) is a strong tradition in marine hydrodynamics. An early example of the application of BEM is by Bai & Yeung [1]. The bottleneck of the conventional BEM in terms of CPU time and computer memory arises as the number of unknowns increases. Wu & Eatock Taylor [2] suggested that the Finite Element Method (FEM) field solver is much faster than the BEM based on their comparisons in a wave making problem. In this paper, we aim to find a highly efficient method to solve fully-nonlinear wave-body interaction problems based on potential-flow theory. We compare the efficiency and the accuracy of five different methods for the potential flows in two dimensions (2D), two of which are BEM-based while the other three are field solvers. The comparisons indicate that it is beneficial to use either an accelerated matrix-free BEM, e.g. Fast Multipole Method accelerated BEM (FMM-BEM), or any field solvers whose resulting matrix are sparse. Another highlight of this paper is that an efficient numerical potential-flow method named the harmonic polynomial cell (HPC) method is developed. The flow in each cell is described by a set of harmonic polynomials. The presented procedure has approximately 4th order accuracy, while its resulting matrix is sparse similarly as the other field solvers, e.g. Finite Element Method (FEM), Finite Difference Method (FDM) and Finite Volume Method (FVM). The method is verified by a linear wave making problem for which the steady-state analytical solution is available, and the forced oscillation of a semi-submerged circular cylinder for which the frequency-domain added mass and damping coefficients are compared. The fully-nonlinear wave making problem and nonlinear propagating waves over a submerged bar are also studied for validation purposes. Only 2D cases are studied in this paper.

Publisher

American Society of Mechanical Engineers

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3