Elastohydrodynamic Lubrication Modeling of Hydrodynamic Nanopolishing Process

Author:

Mittal Rinku1,Singh Ramesh K.1,Joshi Suhas S.2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Abstract

Nanopolishing processes are used in medical, industrial, telecommunication, optics, and military fields. Hydrodynamic polishing (HDP) is one of the prominent nanopolishing methods in creating nanopolished surfaces on hard and profiled surfaces, where rigid tool-based methods like diamond turning, grinding, and honing have many limitations. This work is focused on modeling of hydrodynamic polishing method. In this method, a film of abrasive suspension is formed between the work-piece surface and a rotating soft tool, which helps in nanopolishing. The past experimental research gives an insight into the process but the process has not been explicitly modeled. Consequently, besides experimental characterization, a numerical/mathematical model of hydrodynamic polishing process is important. This paper presents a model of the HDP process which takes into account the polishing process variables, such as, contact load, spindle speed, tool and work-piece material properties/geometry, and abrasive suspension properties. The response of the model is the pressure distribution and the abrasive film thickness in the polishing zone. To model the elastohydrodynamic process encountered in HDP, the pressure and the film thickness profiles of lubricated isothermal point contacts have been evaluated using the multilevel multi-integration (MLMI) scheme coded in C programming language. Finally, load, tool stiffness, speed, and particle concentration in the suspension have been implicitly correlated to the surface roughness (SR) to evolve a semi-empirical model for surface roughness as a function of mean film thickness and mean pressure. Empirical models for mean film thickness and mean pressure have also been developed as a function of process variables. These models have been developed from a Taguchi L27 orthogonal array wherein the mean pressure/film thickness values have been determined from the model and the average surface roughness values have been measured experimentally. It has been observed that the load does not affect the surface roughness significantly and mean pressure does not change with the change in abrasive size and spindle speed. Abrasive particle concentration has been found to be the most important parameter and it affects the surface roughness significantly.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3