Experimental characterization of conformal hydrodynamic nanopolishing of a machined single crystal sapphire cavity

Author:

Kumar Prashant1,Mittal Rinku1,Singh Ramesh K.1,Joshi Suhas S.1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India

Abstract

Sapphire is an important ceramic material which finds applications in fields such as temperature sensing, optics, electronics, and ceramic bearings. Polishing of sapphire has always been a difficult task for industries and research communities. Hydrodynamic polishing (HDP) is one of the prominent methods used for polishing of hard and profiled surfaces, whereas rigid tool-based methods such as diamond turning, grinding, and honing have many limitations. The HDP process involves deterministic flow of abrasive particles in the slurry between the workpiece surface and a rotating soft tool to obtain the desired surface finish. A novel experimental setup has been fabricated to realize the conformal hydrodynamic nanopolishing on single crystal sapphire cavity. In this study, the experiments were conducted to understand the effect of abrasive particle size, basicity of slurry, and change in temperature of slurry on the polishing of machined sapphire cavity. The effect of the initial surface roughness of the machined cavity on conformal hydrodynamic nanopolishing has also been investigated. A microcrack/pit-free surface has been found after the final polishing of the sapphire cavity. An improvement of 21% is found in surface finish after the final polishing using abrasive particle size of 0.06 µm. Abrasive slurry with higher basicity (pH 13) does not improve the surface finish. By heating the abrasive slurry to a temperature of 70°C–75°C, surface finish improves by ∼26% as compared to improvement of ∼ 21% at room temperature polishing.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3