Elastic–Plastic Properties of Mesoscale Electrodeposited LIGA Nickel Alloy Films: Analysis of Measurement Uncertainties

Author:

Liew Li-Anne1,Read David T.2,Martin May L.2,Bradley Peter E.2,Geaney John T.3

Affiliation:

1. Applied Chemicals and Materials Division, National Institute of Standards and Technology Mem. ASME , 325 Broadway, Mail Stop 647, Boulder, CO 80305

2. Applied Chemicals and Materials Division, National Institute of Standards and Technology , 325 Broadway, Mail Stop 647, Boulder, CO 80305

3. U.S. Army Combat Capabilities Development Command Armaments Center , Picatinny Arsenal, NJ 07806

Abstract

AbstractIt is well documented that the microstructure and properties of electrodeposited films, such as lithographie, galvanoformung, abformung (LIGA) Ni and its alloys, are highly sensitive to processing conditions hence the literature shows large discrepancies in mechanical properties, even for similar alloys. Given this expected material variability as well as the experimental challenges with small-scale mechanical testing, measurement uncertainties are needed for property values to be applied appropriately, and yet are uncommon in micro- and mesoscale tensile testing studies. In a separate paper, we reported the elastic–plastic properties of 200 μm-thick freestanding films of LIGA-fabricated nanocrystalline Ni-10%Fe and microcrystalline Ni-10%Co, with specimen gauge widths ranging from 75 μm to 700 μm, and tensile tested at strain rates 0.001 s−1 and 1 s−1. The loads were applied by commercial miniature and benchtop load frames, and strain was measured by digital image correlation. In this paper, we examine the measurement uncertainties in the ultimate tensile strength, apparent Young's modulus, 0.2% offset yield strength, and strain hardening parameters, and compare them to the standard deviations. For several of these properties, the standard deviation cannot be interpreted as the statistical scatter because the measurement uncertainty was larger. Microplasticity affects the measurement of the Young's modulus, thus we recommended measuring the modulus after specimens have been cyclically loaded. These measurement uncertainty issues might be relevant to similar works on small-scale tensile testing and might help the reader to interpret the discrepancies in literature values of mechanical properties for LIGA and electrodeposited films.

Funder

U.S. Army

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference52 articles.

1. Fabrication of Microstructures With High Aspect Ratios and Great Structural Heights by Synchrotron Radiation Lithography, Galvanoformung, and Plastic Moulding (LIGA Process);Microelectron. Eng.,1986

2. Fabrication of Microstructures Using the LIGA Process,1987

3. Deep X-ray and UV Lithographies for Micromechanics,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3