A Data-Driven Framework for Computationally Efficient Integration of Chemical Kinetics Using Neural Ordinary Differential Equations

Author:

Bansude Shubhangi1,Imani Farhad1,Sheikhi Reza1

Affiliation:

1. University of Connecticut Department of Mechanical Engineering, , Storrs, CT 06269

Abstract

AbstractA data-driven methodology is introduced for computationally efficient integration of systems of stiff rate equations in chemical kinetics using neural ordinary differential equations (NODE). A systematic algorithm is developed for training data generation and sampling. Subsequently, a novel transformation technique for sampled training data is designed to regularize the neural network parameters, leading to a stable training process. Finally, the NODE network is iteratively trained to learn the accurate neural network representation of chemical kinetics source terms by minimizing the mean absolute error between the true and predicted solutions. The computational efficiency and accuracy of the NODE network are evaluated by simulating the evolution of the thermochemical state of a constant pressure homogeneous hydrogen-air reactor. The combustion of hydrogen in air is described by a finite-rate mechanism including 9 chemical species and 21 reaction steps. The NODE network shows excellent multi-step prediction accuracy for a wide range of initial temperatures and equivalence ratios, spanning the composition space of real flames. The NODE also exhibit a significant reduction in numerical stiffness of the system, enabling the utilization of explicit solvers for integration. The present simulation results using NODE demonstrate up to 70% speed up in computation time compared to direct integration of the chemical mechanism with at most 3.16% relative error in ignition delay time.

Funder

University of Connecticut

Publisher

ASME International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3