Investigation of deep learning-based filtered density function for large eddy simulation of turbulent scalar mixing

Author:

Bansude ShubhangiORCID,Sheikhi RezaORCID

Abstract

A filtered density function (FDF) model based on deep neural network (DNN), termed DNN-FDF, is introduced for large eddy simulation (LES) of turbulent flows involving conserved scalar transport. The primary objectives of this study are to develop the DNN-FDF models and evaluate their predictive capability in accounting for various filtered moments, including that of non-linear source terms. A systematic approach is proposed to select the DNN training sample size and architecture via learning curves to minimize bias and variance. Two DNN-FDF models are developed, one utilizing FDF data from direct numerical simulations (DNS) of constant-density temporal mixing layer and the other from zero-dimensional pairwise mixing stirred reactor simulations. The latter is particularly intended for cases where generating DNS data is computationally infeasible. DNN-FDF models are applied for LES of a variable-density temporal mixing layer. The accuracy and consistency of both DNN-FDF models are established by comparing their predicted filtered scalar moments with those of conventional LES, where moment transport equations are directly solved. The DNN-FDF models are shown to outperform a widely used presumed-FDF model, especially for multi-modal FDFs and higher variance values. Results are further assessed against DNS and the transported FDF method. The latter couples LES with Monte Carlo for mixture fraction FDF computation. Most importantly, the study shows that DNN-FDF models can accurately filter highly non-linear functions within variable-density flows, highlighting their potential for turbulent reacting flow simulations. Overall, the DNN-FDF approach is shown to offer an accurate yet computationally economical approach for describing turbulent scalar transport.

Funder

University of Connecticut

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3