Modal Methodology for the Simulation and Optimization of the Free-Layer Damping Treatment of a Car Body

Author:

Danti Marco1,Vigè Davide1,Nierop Guido Vincent2

Affiliation:

1. Vehicle Engineering NVH, Centro Ricerche FIAT, Strada Torino 50, 10043 Orbassano (TO), Italy

2. Engineering and Design Virtual Analysis-NVH, Fiat Auto, Corso Settembrini 40, 10135 Torino, Italy

Abstract

The cost and weight reduction requirements in automotive applications are very important targets in the design of a new car. For this reason, all the components of the vehicle have to be optimized and the design of the damping material layout has to be deeply analyzed in order to have a good noise, vibration, and harshness (NVH) performance with minimum mass and cost. A tool for the optimization of the damping material layout has been implemented and tested; the need to explore the entire design space with a big number of variables suggested the use of a genetic multi-objective algorithm for the optimization. These algorithms require a large number of calculations and the solution of the complete NVH model would be too expensive in terms of computation time. For this reason, a new software tool has been developed based on the simulation of the damping material treatments by means of an auxiliary mass and stiffness matrix, which was added to the baseline modal base; using this procedure, the required time for the simulation of each damping material layout configuration is reduced to a few minutes, allowing to exploit the genetic algorithm capability to efficiently explore the design space. As a result, some configurations with an important mass reduction or a much better acoustic performance have been found. This method has been verified on a simple Aluminum box in order to verify all the assumptions and to test the effectiveness in predicting the vibration levels of plates with free layer damping added to it.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3