Concurrent Topology Optimization of Composite Plates for Minimum Dynamic Compliance

Author:

Zhang HengORCID,Ding Xiaohong,Ni Weiyu,Chen Yanyu,Zhang Xiaopeng,Li HaoORCID

Abstract

This paper proposes a novel density-based concurrent topology optimization method to support the two-scale design of composite plates for vibration mitigation. To have exceptional damping performance, dynamic compliance of the composite plate is taken as the objective function. The complex stiffness model is used to describe the material damping and accurately consider the variation of structural response due to the change of damping composite material configurations. The mode superposition method is used to calculate the complex frequency response of the composite plates to reduce the heavy computational burden caused by a large number of sample points in the frequency range during each iteration. Both microstructural configurations and macroscopic distribution are optimized in an integrated manner. At the microscale, the damping layer consists of periodic composites with distinct damping and stiffness. The effective properties of the periodic composites are homogenized and then are fed into the complex frequency response analysis at the macroscale. To implement the concurrent topology optimization at two different scales, the design variables are assigned for both macro- and micro-scales. The adjoint sensitivity analysis is presented to compute the derivatives of dynamic compliance of composite plates with respect to the micro and macro design variables. Several numerical examples with different excitation inputs and boundary conditions are presented to confirm the validity of the proposed methodologies. This paper represents a first step towards designing two-scale composite plates with optional dynamic performance under harmonic loading using an inverse design method.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3