Modelling of Cyclic Plasticity With Unified Constitutive Equations: Improvements in Simulating Normal and Anomalous Bauschinger Effects

Author:

Miller A. K.1

Affiliation:

1. Department of Materials Science and Engineering, Stanford University, Stanford, Calif. 94305

Abstract

In simulating cyclic plasticity with several existing “unified” constitutive equations, the predicted hysteresis loops are “oversquare” with respect to experimentally-observed behavior. To eliminate this shortcoming in the constitutive equations developed by the present author, the work-hardening coefficient in the equation controlling the back stress (R) has been made a function of the back stress itself and the sign of the effective modulus-compensated stress σ/E – R. This improvement results in simulated hysteresis loops whose curvature closely resembles that in experimental tests. The improvement preserves all of the previously demonstrated capabilities such as cyclic hardening, cyclic hardening, cyclic softening, etc. The same equations can also simulate some unusual experimentally-observed Bauschinger effects involving local reversals in curvature. The curvature reversals in the simulations result from strain softening of the isotropic work-hardening variable in the equations. The physical significance of the behavior of the constitutive equations is discussed in terms of annihilation of previously-generated dislocation loops by reversing dislocations and experimentally-observed decreases in dislocation density and dissolution of cell walls upon stress reversal.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3