An Experimental Study of Film Cooling in a Rotating Transonic Turbine

Author:

Abhari Reza S.1,Epstein A. H.2

Affiliation:

1. Textron Lycoming, Stratford, CT

2. Massachusetts Institute of Technology, Cambridge, MA

Abstract

Time-resolved measurements of heat transfer on a fully cooled transonic turbine stage have been taken in a short duration turbine test facility which simulates full engine non-dimensional conditions. The time average of this data is compared to uncooled rotor data and cooled linear cascade measurements made on the same profile. The film cooling reduces the time-averaged heat transfer compared to the uncooled rotor on the blade suction surface by as much as 60%, but has relatively little effect on the pressure surface. The suction surface rotor heat transfer is lower than that measured in the cascade. The results are similar over the central 3/4 of the span implying that the flow here is mainly two-dimensional. The film cooling is shown to be much less effective at high blowing ratios than at low ones. Time-resolved measurements reveal that the cooling, when effective, both reduced the d.c. level of heat transfer and changed the shape of the unsteady waveform. Unsteady blowing is shown to be a principal driver of film cooling fluctuations, and a linear model is shown to do a good job in predicting the unsteady heat transfer. The unsteadiness results in a 12% decrease in heat transfer on the suction surface and a 5% increase on the pressure surface.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3