Effect of purge air on rotor endwall heat transfer of an axial turbine

Author:

Lazzi Gazzini Sebastiano1,Schädler Rainer1,Kalfas Anestis I.2,Abhari Reza S.1,Hohenstein Sebastian3,Schmid Gregor3,Lutum Ewald4

Affiliation:

1. 1LEC ETH Zürich, ML J 41.2, Sonneggstrasse 3, CH-8092 Zürich, Switzerland

2. 2Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece

3. 3Siemens AG, Mellinghofer Str. 55, 45473 Mülheim an der Ruhr, Germany

4. 4MTU AeroEngines AG, Dachauer Str. 665, 80995 München, Germany

Abstract

AbstractIn order to gain in cycle efficiency, turbine inlet temperatures tend to rise, posing the challenge for designers to cool components more effectively. Purge flow injection through the rim seal is regularly used in gas turbines to limit the ingestion of hot air in the cavities and prevent overheating of the disks and shaft bearings. The interaction of the purge air with the main flow and the static pressure field of the blade rows results in a non-homogenous distribution of coolant on the passage endwall which poses questions on its effect on endwall heat transfer. A novel measurement technique based on infrared thermography has been applied in the rotating axial turbine research facility LISA of the Laboratory for Energy Conversion (LEC) of ETH Zürich. A 1.5 stage configuration with fully three-dimensional airfoils and endwall contouring is integrated in the facility. The effect of different purge air mass flow rates on the distribution of the heat transfer quantities has been observed for the rated operating condition of the turbine. Two-dimensional distributions of Nusselt number and adiabatic wall temperature show that the purge flow affects local heat loads. It does so by acting on the adiabatic wall temperature on the suction side of the passage until 30% of the axial extent of the rotor endwall. This suggests the possibility of effectively employing purge air also as rotor platform coolant in this specific region. The strengthening of the secondary flows due to purge air injection is observed, but plays a negligible role in varying local heat fluxes. For one test case, experimental data is compared to high-fidelity, unsteady Reynolds-Averaged Navier–Stokes simulations performed on a model of the full 1.5 stage configuration.

Funder

Siemens AG. MTU Aero Engines AG.

Publisher

Global Power and Propulsion Society

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3