Development of New Critical Heat Flux Correlation for Microchannel Using Energy-Based Bubble Growth Model

Author:

Kumar Ritunesh1,Kadam Sambhaji T.2

Affiliation:

1. Mechanical Engineering Department, Indian Institute of Technology Indore, Indore 453446, Madhya Pradesh, India e-mail:

2. Mechanical Engineering Department, Indian Institute of Technology Indore, Indore 453446, Madhya Pradesh, India

Abstract

Critical heat flux (CHF) is a key design consideration for the systems involving heat dissipation through boiling application. It dictates the maximum limit of performance of heat transfer systems. Abrupt and substantial decrease in heat transfer coefficient is an indirect indication of occurrence of the CHF, which may cause complete burnout of heat transfer surface. Unlike conventional channels, CHF correlations for microchannels are limited and associated with significant variations. In the present paper, effort has been made to develop new CHF models applicable to a frequently occurring scenario of flow boiling in microchannels. The approach combines nondimensional analysis and an energy analysis based bubble growth model at an arbitrary nucleation site. Two separate CHF correlations for refrigerants and water have been developed following a semi-empirical approach. The proposed correlations show good agreement with available experimental data. The mean errors for the refrigerant and water cases are, respectively, found to be 21% and 27% for seven and six relevant datasets. Around 77% data of the refrigerant and 60% data of water are predicted within error band of ±30%. It is also found that influence of a certain energy ratio term (gravity to surface tension, denoted as πE4) is negligible for examined water CHF conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3