Experimental Investigation to Study Convective Mixing, Spatial Uniformity, and Cycle-to-Cycle Variation During the Intake Stroke in an IC Engine

Author:

Choi Woong-Chul1,Guezennec Yann G.2

Affiliation:

1. FloCoTec, Inc., Columbus, OH 43212

2. The Ohio State University, Department of Mechanical Engineering, Columbus, OH 43210

Abstract

The work described in this paper focuses on experiments to quantify the initial fuel mixing and gross fuel distribution in the cylinder during the intake stroke and its relationship to the large-scale convective flow field. The experiments were carried out in a water analog engine simulation rig, and, hence, limited to the intake stroke. The same engine head configuration was used for the three-dimensional PTV flow field and the PLIF fuel concentration measurements. High-speed CCD cameras were used to record the time evolution of the dye convection and mixing with a 1/4 deg of crank angle resolution (and were also used for the three-dimensional PTV measurements). The captured sequences of images were digitally processed to correct for background light non-uniformity and other spurious effects. The results are finely resolved evolution of the dye concentration maps in the center tumble plane. The three-dimensional PTV measurements show that the flow is characterized by a strong tumble, as well as pairs of cross-tumble, counter-rotating eddies. The results clearly show the advection of a fuel-rich zone along the wall opposite to the intake valves and later along the piston crown. It also shows that strong out-of-plane motions further contribute to the cross-stream mixing to result in a relatively uniform concentration at BDC, albeit slightly stratified by the lean fluid entering the cylinder later in the intake stroke. In addition to obtaining phase-averaged concentration maps at various crank angles throughout the intake stroke, the same data set is processed for a large number of cycle to extract spatial statistics of the cycle-to-cycle variability and spatial non-uniformity of the concentration maps. The combination of the three-dimensional PTV and PLIF measurements provides a very detailed understanding of the advective mixing properties of the intake-generated flow field. [S0742-4795(00)00103-4]

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mixture Distribution in Spark Ignited Port Fuel Injection Engines: A Review;Journal of Engineering for Gas Turbines and Power;2023-02-27

2. Unsteady Flow Analysis in a Fired Briggs-Stratton Internal Combustion Engine;49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition;2011-01-04

3. Measurement and Analysis of Unsteady Flows in IC Engines;48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition;2010-01-04

4. A spark-plug LDV probe for in-cylinder flow analysis of production IC engines;Measurement Science and Technology;2005-09-14

5. Modelación de la renovación de la carga en motores cuatro tiempos. Una revisión;Revista Facultad de Ingeniería Universidad de Antioquia;2003-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3