Mixture Distribution in Spark Ignited Port Fuel Injection Engines: A Review

Author:

Nayek Soumyanil1,Mittal Mayank1

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology Madras , Chennai 600036, Tamil Nadu, India

Abstract

Abstract Modern gasoline engines have to meet increased stringent emission requirements along with the demand of a better fuel economy. This has led to a transition from carburetor to port fuel injection (PFI) mode in developing world for engines comprising mostly of two- and three-wheeler segments and small-scale power generation sets. Therefore, a thorough understanding on mixture formation and combustion phenomenon is needed to further enhance PFI engines. Planar laser-induced fluorescence (PLIF) has proved to be a successful optical diagnostic technique that can provide very high spatial resolution images of fuel distribution in the region of interest. This has led to a direct visualization of fuel distribution with evaluation of both spatial and temporal variations. It has furthered understanding of various engines parameters that affect mixture formation process. Various exciting concepts about fuel stratification have been proposed over the years for enhanced engine operations at lean equivalence ratios. These have been verified and optimized by information gathered from PLIF. In this review article, the authors explain mixture formation process right from the point of fuel injection in intake manifold, the subsequent formation of fuel films and its impact on engine operation. Several PLIF studies on fuel distribution, its spatial and cycle-to-cycle inhomogeneities, effects of injection timing, flow field, equivalence ratio and engine speed on mixture formation have been discussed in separate subsections. Furthermore, studies involving concepts of fuel stratification have also been briefly discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference98 articles.

1. Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation,1996

2. Flow, Mixture Preparation and Combustion in Four-Stroke Direct-Injection Gasoline Engines,2008

3. Development of a Small-Bore Gasoline Direct-Injection Engine, and Enhancement of Its Performance Using Multiple- Injection Strategies;SAE Int. J. Engines,2020

4. Effect of Fuel Injection Timing on the Mixture Preparation in a Small Gasoline Direct-Injection Engine,2018

5. A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines,1997

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3