Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification

Author:

Larosa Luca1,Traverso Alberto1,Ferrari Mario L.1,Zaccaria Valentina1

Affiliation:

1. TPG, University of Genoa, Via Montallegro 1, Genoa 16145, Italy e-mail:

Abstract

In this paper, two different advanced control approaches for a pressurized solid oxide fuel cell (SOFC) hybrid system are investigated and compared against traditional proportional integral derivative (PID). Both advanced control methods use model predictive control (MPC): in the first case, the MPC has direct access to the plant manipulated variables, in the second case, the MPC operates on the setpoints of PIDs which control the plant. In the second approach, the idea is to use MPC at the highest level of the plant control system to optimize the performance of bottoming PIDs, retaining system stability and operator confidence. Two MIMO (multi-input multi-output) controllers were obtained: fuel cell power and cathode inlet temperature are the controlled variables; fuel cell bypass flow, current and fuel mass flow rate (the utilization factor kept constant) are the manipulated variables. The two advanced control methods were tested and compared against the conventional PID approach using a SOFC hybrid system model. Then, the MPC controller was implemented in the hybrid system emulator test rig developed by the thermochemical power group (TPG) at the University of Genoa. Experimental tests were carried out to compare MPC against classic PID method: load following tests were carried out. Ramping the fuel cell load from 100% to 80% and back, keeping constant the target of the cathode inlet temperature, the MPC controller was able to reduce the mismatch between the actual and the target values of the cathode inlet temperature from 7 K maximum of the PID controller to 3 K maximum, showing more stable behavior in general.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference22 articles.

1. Emulator Rig for SOFC Hybrid Systems: Temperature and Power Control With a Real-Time Software;Fuel Cells,2013

2. Experimental and Theoretical Evidence for Control Requirements in Solid Oxide Fuel Cell Gas Turbine Hybrid Systems;J. Power Sources,2012

3. Solid Oxide Fuel Cell Hybrid System: Control Strategy for Stand-Alone Configurations;J. Power Sources,2011

4. Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status;ASME J. Eng. Gas Turbines Power,2002

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3