Study on Model Evolution Method Based on the Hybrid Modeling Technology With Support Vector Machine for an SOFC-GT System

Author:

Chen Jinwei1,Sun Shengnan1,Chen Yao1,Zhang Huisheng1,Lu Zhenhua1

Affiliation:

1. Shanghai Jiao Tong University Gas Turbine Research Institute, , Shanghai 200240 , China

Abstract

Abstract The mechanism models of solid oxide fuel cell–gas turbine (SOFC-GT) systems are very useful to analyze the thermodynamic performance details, including the internal complex transfers of mass, heat, and electrochemical processes. However, several physical-property parameters in the mechanism model are unmeasurable and difficult to accurately quantify from the operation data when the inevitable degradation occurs. As a result, it is difficult for the mechanism model to accurately capture the SOFC electrochemical characteristic during the full operating cycle. In this paper, a model evolution method based on hybrid modeling technology is proposed to address this problem. A hybrid modeling framework of a SOFC-GT system is designed by combining a least squares-support vector machine algorithm (LS-SVM) electrochemical model with our previous mechanism model. The electrochemical characteristic of SOFC is easily identified and evolved by re-training the LS-SVM model from operating data, no longer needing a mechanism electrochemical model. The validated full-mechanism model from our previous work is taken to simulate a physical SOFC-GT system to generate the operating data. Various LS-SVM models are trained by different data sets. The comparison results demonstrate that the LS-SVM model trained by large-size data set 3 performs the highest accuracy in predicting the local current density. The maximum absolute error of prediction is only about 1.379 A/m2, and the prediction mean square error of the normalized test data reaches 4.36 × 10−9. Then, the LS-SVM hybrid model is applied to evaluate the thermodynamic performance of a SOFC-GT system. The comparison results between the hybrid model and our previous full-mechanism model show that the hybrid model can accurately predict the SOFC-GT system performance. The maximum error is 1.97% at the design condition and 0.60% at off-design conditions. Therefore, the LS-SVM hybrid model is significant for accurately identifying the real electrochemical characteristic from operation data for a physical SOFC-GT system during the full operation cycle.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3