On LMI-Based Optimization of Vibration and Stability in Rotor System Design

Author:

Cole Matthew O. T.1,Wongratanaphisan Theeraphong1,Keogh Patrick S.2

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand

2. Department of Mechanical Engineering, Faculty of Engineering and Design, University of Bath, Bath, BA2 7AY, UK

Abstract

This paper considers optimization of rotor system design using stability and vibration response criteria. The initial premise of the study is that the effect of certain design changes can be parametrized in a rotor dynamic model through their influence on the system matrices obtained by finite element modeling. A suitable vibration response measure is derived by considering an unknown axial distribution of unbalanced components having bounded magnitude. It is shown that the worst-case unbalanced response is given by an absolute row-sum norm of the system frequency response matrix. The minimization of this norm is treated through the formulation of a set of linear matrix inequalities that can also incorporate design parameter constraints and stability criteria. The formulation can also be extended to cover uncertain or time-varying system dynamics arising, for example, due to speed-dependent bearing coefficients or gyroscopic effects. Numerical solution of the matrix inequalities is tackled using an iterative method that involves standard convex optimization routines. The method is applied in a case study that considers the optimal selection of bearing support stiffness and damping levels to minimize the worst-case vibration of a flexible rotor over a finite speed range. The main restriction in the application of the method is found to be the slow convergence of the numerical routines that occurs with high-order models and/or high problem complexity.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3