PIV Measurements of Flow in a Centrifugal Blood Pump: Steady Flow

Author:

Day Steven W.1,McDaniel James C.1

Affiliation:

1. The University of Virginia, Charlottesville, VA 22903

Abstract

Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent (Reynolds) stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3–9L∕min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and∕or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6L∕min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9L∕min) and low (3L∕min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference77 articles.

1. A Couette Viscometer for Short Time Shearing of Blood;Heuser;Biorheology

2. Estimation of Shear Stress Related Blood Damage in Heart Valve Prostheses: In Vitro Comparison of 25 Aortic Valves;Giersiepen;Int. J. Artif. Organs

3. Rheological Aspects of Thrombosis and Haemostasis: Basic Principles and Applications;Goldsmith;Thromb. Haemostasis

4. Flows in Stenotic Vessels;Berger;Annu. Rev. Fluid Mech.

5. The Artificial Heart as a Bridge to Transplant;Copeland;Cardio, Oct.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3