Estimation of Shear Stress-related Blood Damage in Heart Valve Prostheses - in Vitro Comparison of 25 Aortic Valves

Author:

Giersiepen M.1,Wurzinger L.J.2,Opitz R.3,Reul H.1

Affiliation:

1. Helmholtz-lnstitut für Biomedizinische Technik an der RWTH Aachen - F.R.G.

2. Anatomisches Institut der TU München - F.R.G.

3. Aerodynamisches Institut der RWTH Aachen - F.R.G.

Abstract

The hemodynamics of heart valve prostheses can be reproducibly investigated in vitro within circulatory mock loops. By measuring the downstream velocity and shear stress fields the shear stresses which are clinically responsible for damage to platelets and red blood cells can be determined. The mechanisms of damage and the effects of shear stresses on blood corpuscles were investigated by Wurzinger et al. (3, 4) at the Aerodynamics Institute of the RWTH Aachen. In the present study, the above data are incorporated into a mathematical correlation, which serves as a basic model for the estimation of blood damage. This mathematical model was applied to in vitro investigations of 25 different aortic valve prostheses. The results were compared to clinical findings. In most cases agreement was good, indicating that this model may be directly applied to the clinical situation. This new method facilitates the estimation of clinically expected blood damage from in vitro measurements. It may be useful for the development and evaluation of new valve prostheses. By comparative evaluation of different valve types it also provides additional information to help the implanting surgeon select the optimum valve for his patient.

Publisher

SAGE Publications

Subject

Biomedical Engineering,Biomaterials,General Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3