Determination of Time-Delay Parameters in the Dual-Phase Lagging Heat Conduction Model

Author:

Ordóñez-Miranda J.1,Alvarado-Gil J. J.1

Affiliation:

1. Department of Applied Physics, Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Mérida, Carretera Antigua a Progreso kilómetro 6, Apartado Postal 73 Cordemex, Mérida, Yucatán 97310, México

Abstract

The study of thermal transport based on the dual-phase lagging model involves not only the well known thermal properties but also two additional time parameters. Those parameters permit to take into account the thermal inertia and the microstructural interactions of the media in such a way that they establish the nonsimultaneity between temperature changes and heat flux. In the dual-phase lagging model, heat transport phenomena are extremely sensitive not only to the size of each time parameter but also to the relative size of them. In order to obtain useful and reliable results, it is important to develop methodologies for the determination of those time parameters. Additionally it is necessary to count with tools that allow evaluating easily the sensitivity of the temperature and heat to the changes in those time parameters. In this work, a system formed by a semi-infinite layer in thermal contact with a finite one, which is excited by a modulated heat flux, is studied. When the thermal effusivities of the layers are quite different, it is shown that a frequency range can be found in which the normalized amplitude and phase of the spatial component of the oscillatory surface temperature show strong oscillations. This behavior is used to obtain explicit formulas for determining simultaneously the time parameters as well as additional thermal properties of the finite layer, under the framework of the dual-phase lagging model of heat conduction. The limits of the corresponding equations for single-phase lagging models of heat conduction are also discussed.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3