On the Doubly Regenerative Stability of a Grinder: The Effect of Contact Stiffness and Wave Filtering

Author:

Thompson R. A.1

Affiliation:

1. GE Corporate Research and Development, Schenectady, NY 12345

Abstract

In the interest of acquiring a physical understanding of the causes and growth of chatter in grinders, past studies of doubly regenerative stability by the author (Thompson, 1974, 1977; Hahn and Thompson, 1977) looked at unnaturally high workpiece rotational speeds, excluded the contribution of cutting zone contact stiffness, and did not consider the effect of workpiece wave filtering. By incorporating these effects into the past referenced work, this paper attempts to close the gap between basic understanding and actual grinder behavior. It is known that at low speeds chatter involving large numbers of lobe pairs is excited. This leads to a diffuse frequency spectrum. It is further shown that the effect of finite contact stiffness is to improve stability and that workpiece wave filtering has no effect on basic stability, but leads to self-limiting chatter. The approach to wave filtered quasistability is accompanied by a lowering of chatter frequency.

Publisher

ASME International

Subject

General Medicine

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3